Invited Commentary

I Can See (Myelin) Clearly Now

Rachel B. Atkinson, MD; Eric G. Sheu, MD, DPhil

Intraoperative identification of nerves remains a technical cornerstone of many operations across a variety of surgical specialties. This phase 1 trial¹ of rizedisben—a novel myelin-

Related article

targeting fluorophore emitting in the blue light spectrum—represents a pivotal step toward enhancing intra-

operative nerve visualization. Gold et al¹ demonstrate safety and efficacy of rizedisben in visualizing the obturator nerve during robotic radical prostatectomy. Rizedisben also allowed visualization of periprostatic neurovascular bundles, although less frequently than the larger obturator nerve, suggesting reduced efficacy in smaller or less heavily myelinated nerves

Arguably, these smaller nerves are more at risk of injury than larger nerves more readily identifiable with the naked eye.² If the sensitivity and specificity of rizedisben can be improved to reliably highlight these nerves, it could potentially reduce rates of iatrogenic nerve injury. Its application would then extend far beyond pelvic surgery, potentially transforming dissection in cases such as inguinal hernia repairs and esophageal or hiatal operations. Optimization for open surgery could expand its use to procedures such as thyroidectomies and axillary dissections, increasing the

potential impact of rizedisben on surgical efficiency and patient morbidity.

Rizedisben is novel in that it directly binds to tissue, as opposed to other commonly used intraoperative dyes. For example, indocyanine green allows visualization based on its circulation and route of injection (eg, intravascular or intraluminal) or its absorption (into bile for cholangiography). The potential for direct tissue targeting is an exciting advancement for structure identification not amenable to current fluorescent imaging techniques. Could similar fluorophores be developed that bind to other tissue types, such as lymphatics, vasculature, tumor, or fibrosis?

Technologies to aid anatomic identification, such as imageguided or computer-assisted techniques and artificial intelligence platforms, are rapidly expanding in surgery. Fluorophores have theoretical advantages: they provide real-time dynamic structure visualization in soft tissue deformed by pathology or retraction and can be used in conjunction with computer technologies. To date, however, evidence that intraoperative fluorescence improves surgical outcomes is weak. Studies have suggested fluorophores reduce operative times, rates of anastomotic leak, and conversion to open surgery, but high-quality evidence with controlled comparison groups is lacking. Still, although work remains, Gold et al have made clear that the future of surgery is lit.

ARTICLE INFORMATION

Author Affiliations: Division of General and GI Surgery, Brigham and Women's Hospital, Boston, Massachusetts.

Corresponding Author: Eric G. Sheu, MD, DPhil, Division of General and Gl Surgery, Brigham and Women's Hospital, 45 Francis St, ASBII-3, Boston, MA 02115 (esheu@bwh.harvard.edu).

Published Online: July 2, 2025. doi:10.1001/jamasurg.2025.1979

Conflict of Interest Disclosures: Dr Sheu reported personal fees from Vicarous Surgical and Cine-Med, nonfinancial support from Intuitive Surgical, and grants from Novo Nordisk; in addition, Dr Sheu had a patent for compositions and methods related to cholic acid 7-sulfate as a treatment for diabetes issued, a patent for synthetic derivatives of cholic acid-7-sulfate and uses thereof pending, a patent

for methods for inducing bile acid sulfotransferase Sult2a for treating metabolic disorders pending, and a patent for methods and compositions for treating hypoglycemia pending. No other disclosures were reported.

REFERENCES

- 1. Gold SA, Pere MM, Assel M, et al. Rizedisben in minimally invasive surgery: a nonrandomized clinical trial. *JAMA Surg*. Published online July 2, 2025. doi:10.1001/jamasurg.2025.1987
- 2. Sharp E, Roberts M, Żurada-Zielińska A, et al. The most commonly injured nerves at surgery: a comprehensive review. *Clin Anat*. 2021;34(2): 244-262. doi:10.1002/ca.23696
- **3**. Kitaguchi D, Harai Y, Kosugi N, et al. Artificial intelligence for the recognition of key anatomical structures in laparoscopic colorectal surgery. *Br J*

Surg. 2023;110(10):1355-1358. doi:10.1093/bjs/znad249

- 4. Deng H, Zeng X, Hu H, et al. Laparoscopic left hemihepatectomy using augmented reality navigation plus ICG fluorescence imaging for hepatolithiasis: a retrospective single-arm cohort study (with video). Surg Endosc. 2024;38(7):4048-4056. doi:10.1007/s00464-024-10922-8
- **5.** van den Bos J, Schols RM, Boni L, et al. Near-infrared fluorescence cholangiography assisted laparoscopic cholecystectomy (FALCON): an international multicentre randomized controlled trial. *Surg Endosc.* 2023;37(6):4574-4584. doi:10.1007/s00464-023-09935-6
- **6**. Fransvea P, Chiarello MM, Fico V, Cariati M, Brisinda G. Indocyanine green: the guide to safer and more effective surgery. *World J Gastrointest Surg.* 2024;16(3):641-649. doi:10.4240/wjgs.v16.i3.641